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The time-temperature superposition principle, frequently used to describe the mechanical and 
electrical relaxation behaviour of polymers, is considered within the more general concept of 
scaling with translation path parallel to the abscissa. The most general functions leading to 
scaling with translation path parallel to the horizontal axis are given. Furthermore, the meaning 
of the matching of the different curve segments, when the composite or master curve is con- 
structed, is discussed. Finally, the concepts developed are applied to particular functions used 
for polymers and to the Williams- Landel- Ferry equation. 

1. Introduct ion 
The so called time-temperature superposition prin- 
ciple is widely used to extend the range of the measure- 
ments when transient or dynamic viscoelastic par- 
ameters or electrical relaxation processes are studied 
in polymers, as a function of time and at different 
temperatures [1-8]. According to this principle time 
and temperature are equivalent, i.e., a given property 
measured for short times at a given temperature is 
identical with one measured for longer times at a 
lower temperature, except that the curves are shifted 
on a logarithmic time axis. They can be superimposed 
once more by proper scale changes on this axis. Simi- 
larly, portions of the response curves can be observed 
at different temperatures and these curve segments can 
then be shifted along the log (time) axis to construct a 
composite curve or master curve, applicable for a 
given temperature, extending over many decades of 
time. 

The shift factor for a curve segment is designated by 
at ,  log ar being the horizontal displacement to allow 
it to join smoothly into the master curve. This is the 
factor by which the time scale is altered due to the 
difference in temperature, and is, a function of tem- 
perature. Furthermore, for all linear viscoelastic 
materials over a limited temperature range the 
horizontal shift factors are given by the empirical 
Wil l iams-Landel-Ferry  (WLF) equation [6] 

l o g a r  = - q ( T -  To)/[Ca + ( T -  To)] (1) 

where T is the temperature, To is a reference tem- 
perature and q ,  c2 depend on To. 

Povolo and collaborators [9-12] have analysed the 
scaling property observed in the experimental log a -  
log i creep and stress-relaxation curves in various 
metals and alloys, a is the applied stress and ~ the 
plastic strain rate. This scaling property means that it 
is possible to superpose by a translation (A log a, 
A log 4) any one of the curves onto any of the others, 
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in such a way that the overlapping segments of each 
curve match within experimental error. The trans- 
lation path,/~, is given by 

# = A log o-/A log ~ = constant (2) 

The similarities between the concepts involved in the 
time-temperature superposition principle and the 
scaling property should be noticed at this point. This 
will be discussed later on in the paper. 

Povolo [12] has established the general form of a 
family of curves which superimpose under a trans- 
lation path along a given direction and the general 
conditions that a scalar field must satisfy to present a 
scaling behaviour. The general form of this family of 
curves is given by 

g ( A x  + By  + Cz) = ax  + by + cz + d (3) 

where g is a real function, continuous, single-valued 
and differentiable and A, B, C, a, b, c, d are real 
constants. Equation 3 can be interpreted as defining 
a family of curves in the (x, y)-plane, at different 
z-levels, or in the (x, z)-plane, at different y-levels, or 
in the (y, z)-plane, at different x-levels. The corre- 
sponding translation paths are given by 

A y / A x  = (Ac - Ca)/(Cb - Be) (4) 

A y / A z  = (Ca - Ac ) / (Ab  - Ba) (5) 

az/Ax = ( A b -  8a)/ (Bc-  Cb) (6) 

Equation 3 describes the general function leading to a 
scaling behaviour when curves are considered in the 
plane determined by two coordinate axes, parametrized 
in the third coordinate. Furthermore, an important 
point to be noticed is that a scaling behaviour in one of 
the planes leads to scaling in the other two planes, with 
different translation paths, defined by a pair of coor- 
dinate axes. Furthermore, when viewed only in one of 
the planes, Equations 4 to 6 also establish a relation- 
ship between the increments in the different variables. 
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It is the purpose of this paper to show that the 
time-temperature principle is a consequence of the 
scaling properties described by Equations 3 to 6, for 
the particular case where the translation path is paral- 
lel to the horizontal axis. In addition, the precise 
meaning of the different curve segments will be dis- 
cussed and the results will be applied to different 
constitutive equations used for the description of vis- 
coelastic behaviour of polymers. 

2, Theory 
2.1. General conditions for scaling 
It is generally stated, when the curve segments are 
shifted along a given direction to construct the master 
curve, that the matching segments should join 
smoothly, or, as pointed out in the Introduction, that 
the overlapping segments of each curve match within 
experimental error. Clearly, this matching concept 
should be defined more precisely. 

Fig. 1 schematically shows two curves in the (x, y)- 
plane, parametrized in z, related by scaling along the 
translation path of slope 

# = Ay /Ax  = constant (7) 

When curve z~ is translated onto curve zz, for example, 
i.e., when points A, A', etc., are translated to B, B', 
etc., along the translation path shown, the following 
conditions must be fulfilled, according to the defi- 
nition of the scaling property: 

(a) Points of equal derivatives should be super- 
posed, i.e., 

y'~(x, z,) = y~(x + Ax, z2); 

y'A.(X', Z~) = y~.(X" + Ax' ,  z2); etc. (8) 

where y' = dy /dx  indicates the derivative at any 
point. 

(b) The translation path is independent of the vari- 
ables, as expressed by Equation 7. 

Conditions (a) and (b) define unambiguously the 
scaling property. Equation 3 gives the most general 
function satisfying these requirements. In fact, as 
shown by Equations 4 to 6, requirement (b) is fulfilled. 
The condition expressed by Equation 8 is also obeyed 
since by using the theorems for the derivatives of 
implicit functions it is easy to show that [12] 

@(x,  z)/#xlz = - [ g ' ( u ) A  - a ] / [ g ' ( u ) B -  b] (9) 

where u = A x  + By + Cz and g'(u) = dg/du. 
Then, ifAAx + BAy + CAz = 0, which is one of the 
conditions for scaling behaviour, it is easy to show 
that Equation 8 is also satisfied. Analogous conditions 
can be obtained for the scaling in the other two planes. 

The considerations made can be extended to a func- 
tion of the type 

g[Ax + By + Ch(z)] = ax + by + ch(z) + d 

(10) 

since z = constant implies h(z) = constant, where h(z) 
is any function of z. The conditions for scaling, in this 
case, are given by 

A A x  + B A y  + CAh(z) = 0 (11) 

I 
X---~ 

Figure I Two curves in the (x, y)-plane, parametrized in z, related 
by scaling along the translation path of slope/t. Points A, B or A', 
B', etc., have the same derivatives. 

and 

aAx  + bay  + cAh(z) = 0 (12) 

The translation path in the (x, y)-plane is unaltered. 
i.e., Equation 4 is valid also for this case. The other 
two scaling relationships are transformed to 

Ay/Ah(z)  = (Ca - Ac) / (Ab - Ba) (13) 

Ah(z) /Ax  = (Ab - Ba)/(Bc - Cb) (14) 

It should be pointed out that similar considerations 
can be made for functions of the type 

g(Ah(x)  + By + Cz) = ah(x) + by + cz + d 

(15) 
and 

g ( A x  + B h ( y )  -4- Cz) = ax + bh(y)  + cz + d 

(16) 

but for scaling in the (y, z) and (x, z)-planes, respec- 
tively. 

2.2. Scaling with the translation path parallel 
to the abscissa 

In what follows and to simplify the procedure, only 
the (x, y)-plane will be considered, with the under- 
standing that the extension to the other two planes is 
straightforward. Then, if the translation path is paral- 
lel to the x-axis, the scaling conditions for Equation 10 
are reduced to 

A y / A x  = (Ac - Ca)/(Cb - Bc) = 0 (17) 

Ay/Ah(z)  = (Ca - Ac) / (Ab - Ba) = 0 (t8) 

Ah(z ) /Ax  = (Ab - Ba)/(Bc - Cb) (19) 

since Ay = 0. Equations 17 to 19 imply that 

A c -  Ca = 0 (20) 

A b -  Ba ¢ 0 (21) 

C b - B c  # 0 (22) 

Furthermore, from Equation 20 

a/A = c/C = k (23) 

and Equation 10 is reduced to 

g(Ax  + By + Ch(z)) = k A x  + by + kCh(z)  + d 

(24) 
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which  is the most general function with scaling in the 
(x, y)-plane, with a translation path parallel to the 
abscissa, i.e., with a translation path of slope # = 0. 

On taking into account Equations 20 to 22 and the 
fact that the three variables must be involved, the 
following particular cases of Equation 10 also lead to 
scaling with # = 0: 

(a) 

A = 0; C = 0; b --A 0; B # 0; c # 0; a # 0 (25) 

then 

and 

g(By)  = a x  + by  + ch(z)  + d (26) 

A h ( z ) / A x  = - a / c  (27) 

(b) 

A = 0; C = 0 ;b  = 0; B # 0 ;c  # 0; a # 0 (28) 

then 

g ( B y )  = a x  + ch(z) + d (29) 

and 

A h ( z ) / A x  = - a /c  (30) 

(c) 

a = 0; c = 0; B # 0; A # 0;b  # 0; C # 0 (31) 

then 

g [ A x  + B y  + Ch(z)] = by + d (32) 

and 

A h ( z ) / A x  -~ - A / C  (33) 

(d) 

a = 0; c = 0; B = 0; A # 0;b  # 0 ; C  # 0 (34) 

then 

g [ A x  + Ch(z)] = by 4- d (35) 

and 
A h ( z ) / A x  -~ - A / C  (36) 

The situation 

A = 0; B = 0; C = 0; a # 0 ;b  # 0 ;c  ~ 0 (37) 

leads to 

a x  + by  + ch(z) = 0 (38) 

which is a trivial case. In fact, Equation 38 leads to 

parallel straight lines in the (x, y)-plane, at different 
h(z) levels, and, any translation path is possible. This is 
reflected by the fact that, even if Equation 20 is satis- 
fied, Equations 21 and 22 are not fulfilled in this case. 

The results given by Equations 17 to 38 are sum- 
marized in Table I. It should be pointed out that 
Equations 18 and 19 imply that when Equation 10 is 
plotted in the [y, h(z)]-plane, at different x levels, a 
scaling relationship should be observed with a trans- 
lation path parallel to the h(z) axis. Moreover, a scal- 
ing relationship with a translation path with a slope 
given by the second column of Table I should also be 
observed, when the function is plotted in the [x, h(z)]- 
plane, at different y levels. 

In the particular case where h(z) is a linear function, 
i.e., when 

h(z)  = ~ + flz 

then (39) 

zXh(z) = f lAz  

and the increments o f x  are linearly related to those of 
z, implying that a scaling relationship will be observed 
in the (x, y)-plane, at different z levels. 

Finally, Ah(z) can be expressed as 

Ah(z )  = h(z  + Az )  - h(z)  

= [h ' (z ) / l ! ]Az  + [h"(z)/Z!](Az) 2 

+ [h"'(z) /3!](Az)  3 4 - . . .  (40) 

where h'(z) ,  h"(z), h '" (z ) ,  etc., indicate the successive 
derivatives of h(z)  taken at the value z. 

3. Applications 
The superposition of the response curves, by a shifting 
along the log-(time) axis, to construct a composite 
curve or master curve according with the t ime- 
temperature superposition principle, implies, within 
the context of the scaling properties, that the different 
curves must be related by scaling with a translation 
path parallel to the horizontal axis. In fact, according 
to Bueche [2] the creep compliance, D(t) ,  when 
represented as 

3 v k r D ( t )  = 4,(t/T,) (41) 

where k is Boltzmann constant, t is the time, v is the 
number of network chains per unit volume, ~ is a 
general function and q is a function only of T, obeys 
the time-temperature superposition principle. This 
can be shown very easily by applying the scaling 

T A B L E  I Functions leading to scaling with a translation path parallel to the abscissa axis in the (x, y)-plane, i.e., y = 0, when the 
function is plotted at different h(z) levels, g is a general function and A0 B, C, a, b, c, d and k are real constants. The second column gives 
the relationship between the increments of  x and those of z. 

Function Relationship between increments 

g(Ax + By + Ch(z)) = k A x  + by + kCh(z) + d 
A # 0 ; C # 0 ; B # 0 ; k # 0  

g(Ax + By + Ch(z)) = by + d 
A # 0 ; C # 0  

g(By) = ax + by + ch(z) + d 
B ¢ 0 ; a  # 0 ;c  # 0 

Ah(z)/Ax = - A/C 

zXh(z)/Ax = - A/C 

Ah(z)/Ax = - a / c  
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concepts developed, since with the change of variables 

y = 3vkTD(t) 

x = In t (42) 

h(z) = ln~i(T);  z - -  T 

Equation 41 can be written as 

y = ~O{exp [x - h(z)]} (43) 

Equation 43 is a particular case of Equation 35 with 
d =  0, b = 1, B =  0, A = 1, C =  - l a n d  

Ah(z)/Ax = A log z~ (T)/A log t = 1 (44) 

A similar situation is found for expressions of  the type 

i = 1  

(45) 

N--1  

G"/T = (oR/M~) ~ [e)vi/(1 + e)2r~)] (46) 
i =1  

where 

z~ = r~zq/[2N sin (bz/2N)] 2 (47) 

which are frequently used to describe the relaxation 
behaviour of dilute polymer solutions. R is the gas 
constant, 0 is the density of the material, G' and G" are 
the storage and loss shear moduli, respectively, N is 
the number of Gaussian subchains in which the poly- 
mer molecule is divided, o) = 27cv where v is the 
applied frequency and M~ is the molecular weight. The 
longest relaxation time q is only a function of tern- 
perature. 

On taking into account Equation 47, Equations 45 
and 46 can be written as 

G'/QT = (R/M~) 1 + ~ [exp2(lnv + l n r l ( T )  
i = !  

) 
+ In b~)]/[1 + exp 2(ln v + In q (T)  + In bi)]) 

(48) 

N - 1  

G"/QT = (R/M~) ~ [exp (In v + In r l (T ) 
i = I  

+ in bi)]/[1 + exp 2(ln v + In zl(T) + In bi)l} 

(49) 
where 

bi = ~22/[2N sin (ir~/2V)] 2 + 2zt (50) 

With the change of variables x = In v, y = G'/To or 
G"/To, h(z) = In ~I(T) and z = T, it is easily seen 
that equations 48 and 49 lead to a function of the type 
given by the second row of Table [, with A = 1, 
B = O,C = 1, b = 1, d =  - R / M c f o r E q u a t i o n 4 8  
and d = 0 for Equation 49. For both equations 

A log "c I(T)/A log v = -- 1 

Furthermore, on taking the logarithm of both sides of 
Equations 48 and 49 it is easily seen that a plot of 
log (G'/TQ) or log (G"/To) versus log v also leads to 
the same type o fg  function. Then, a representation of 

both functions in this way leads to scaling with a 
translation path parallel to the log v axis, or, which is 
equivalent, to the applicability of the time-temperature 
superposition principle. It should be pointed out that, 
according to Table I, not only a function of the type 

4)(T)R(t) = O(t/~(T)) (52) 

where ~b(T) is a function of temperature, R(T) is some 
response function (creep compliance, shear modulus, 
etc.), leads to the applicability of the time-temperature 
superposition principle. In fact, Equations 41, 45 and 
46 are included in this particular case. According to 
Table I, however, functions of the type 

g[ (o (T)R( t ) ]  = d? (T )R( t ) z (T ) t  (53) 

g[4)(T)R(t)t/z(T)] = ~)(T)R(t)t/z(T) (54) 

for example, also lead to the time-temperature super- 
position principle when log [4(T)R(t)] is plotted as a 
function of log (t), at different temperatures. 

Finally, some comments should be made to the 
WLF equation, i.e., to Equation 1. According to the 
notation used in the Theory, log (at) is equivalent to 
Ax and the scaling conditions for all the functions 
given in Table I imply that 

Ah(z)/Ax = constant = K (55) 

Equation 1 can be obtained from this condition if 

h(z) = p + q/(r + z) (56) 

where p, q and r are constants, independent of z. In 
fact, 

Ah(z) = h(z + Az) - h(z) 

= -[q/(r  + z)]Az/[(r + z) + Az] (57) 

which, on taking into account Equation 55 can be 
written as 

Ax = -[q/(r  + z)K]Az/[(r + z) + Az] (58) 

Equation 1 can easily be obtained by making the 
change of variables Ax = log (at), z = To, Az = 
T - To and 

q(To) = q/K(r + To) (59) 

c2(T0) = (r + To) (60) 

In addition 

cl c2 -= q/K (6l) 

which is independent of To, i.e., independent from the 
selected reference temperature. 

Equations 59 to 61 show that if the g function is 
known, i.e., if K is known, q and r can be obtained 
from the measured values of c I and c2, from any 
reference temperature. These determine h(z), except 
for an additive constant. 

As an example, following the analysis used by 
Bueche [2] it can be shown that 

In q = In [2N2a2/rc2~bo ~2] 

+ ( 1 3 * v * / ~ v g ) / { [ ( % / ~ v g )  - rg] + :r} 
(62) 

where Tg is the glass transition temperature, 5 is the 

1 533 



Cl (T0) = 

~ ( r o )  = 

and 

average jump distance of the polymer segment, q~0 is 
the pre-exponential factor for the jumping frequency, 
a is the average length of the free orientating segments, 
v* is the critical free volume, Vg and Vfg are the total 
and the free volume, respectively, associated with each 
segment at the glass transition, ~ is the expansion 
coefficient for the gross liquid minus the expansion 
coefficient for the glass and 

fl* -~ [In (v*/vr) - 1] (63) 

where vr is the free volume associated with each seg- 
ment, above the glass transition. Clearly, Equation 62 
can be transformed to Equation 56 with h(z) = In ~ 
and 

p = In (2N2a2/~Z2~o&2) (64) 

q = J ~ * ' U * / ~ V g  (65) 

r = ( v fg /~%) -  Tg (66) 

Then, when the storage and loss shear moduli (Equa- 
tions 48 and 49) are measured as a function of fre- 
quency K = - 1 (Equation 51) and the constants of 
the WLF equation are given, in this case, by (Equations 
59 to 61) 

- - f l*V*/~Vg[(Vfg /~Vg) -  Tg q- To] (67) 

( 'Ufg/0~'Og) - -  Tg + To (68) 

C 1C 2 = - -  fl*v*/aVg (69) 

where To is a given reference temperature. Further- 
more, if To = Tg, i.e., if the reference temperature is 
taken as the glass transition and in the particular 
model of Equation 62, Equations 67 and 68 are 
reduced further to 

cI(Tg ) = --fl•V*/Vfg (70)  

c2(Tg ) = 7.)fg/0~Vg (71)  

Finally, it should be pointed out that a physical 
model is needed to determine completely the function 
h(z), as in the case of Equation 56. When the model is 
not available, however, some simple particular cases 
can be considered, for example, 

h(z) = a* + b*z 2 (71) 

where a* and b* are constants. Then, from Equation 
40 

Ah(z) = 2b*z(Az) + b*(Az) 2 (72) 

which, on taking into account Equation 55 can be 

written as 

Ax/Az = (2b*/K) (z + ½Az) (73) 

Then, if Equation 71 is obeyed, a plot of (Ax/Az) 
against Az, for a given reference z = z0, should lead to 
a straight line of slope (b*/K) and intercept (2b*zo/K). 

4. Conclusions 
General functions leading to scaling with a translation 
path parallel to the abscissa have been presented. 
Within the general formalism used, it has been shown 
that the time-temperature superposition principle, 
frequently used to describe the response functions of 
polymers, means that these functions must belong to 
the family of general functions with scaling along the 
abscissa. 

The scaling property has been defined rigorously, to 
precise the meaning of the matching of the different 
curve segments, when the master or composite curve is 
constructed. 

Finally, the general concepts have been applied to 
particular functions used in the literature to describe 
the mechanical response of polymers and to the 
Williams-Landel-Ferry equation. 
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